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The motion of long bubbles in tubes 

By F. P. BRETHERTON 
Trinity College, Cambridge 

(Received 9 November 1960) 

A long bubble of a fluid of negligible viscosity is moving steadily in a tube filled 
with liquid of viscositypat small Reynolds number, theinterfacial tension being c. 
The angle of contact at the wall is zero. Two related problems are treated here. 

In  the first the tube radius r is so small that gravitational effects are negligible, 
and theory shows that the speed U of the bubble exceeds the average speed of 
the fluid in the tube by an amount U W ,  where 

W N 1-29(3pU/c)8 as pU/u -+ 0. 

(This result is in error by no more than 10% provided p U / a  < 5 x 10-3.) The 
pressure drop, P, across such a bubble is given by 

P 21 3*58(3pU/u)%u/r as pU/u -+ o 
and W is uniquely determined by conditions near the leading meniscus. The 
interface near the rear meniscus has a wave-like appearance. This provides a 
partial theory of the indicator bubble commonly used to measure liquid flow- 
rates in capillaries. A similar theory is applicable to the two-dimensional motion 
round a meniscus between two parallel plates. Experimental results given here 
for the value of Wagree well neither with theory nor with previous experiments by 
other workers. No explanation is given for the discrepancies. 

In  the second problem the tube is wider, vertical, and sealed at one end. The 
bubble now moves under the effect of gravity, but it is shown that it will not rise 
at all if pgr2/a < 0.842, 

where p is the difference in density between the fluids inside and outside the 
bubble. If 

0-842 < pgr2/a < 1.04, then pgr2/u- 0.842 = 1-25(,uUU/cr)t+ 2-24(pU/cr)*, 

accurate to within 10 yo. Experiments are adduced in support of these results, 
though there is disagreement with previous work. 

1. Introduction 
In  many physical experiments the rate of flow of a liquid is measured by pass- 

ing it through a capillary tube of radius r ,  containing an indicator bubble of air, 
of length several tube diameters. It was pointed out by Fairbrother & Stubbs 
(1935) that such a bubble moves somewhat faster than the average speed of the 
liquid in the tube, because it does not behave like a closely fitting piston. Motion 
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in which the ends of the bubble formed two hemispherical caps filling the tube 
cross-section would involve infinite viscous stresses at  the wall. The only physical 
forces tending to maintain the shape of the ends against these stresses are those 
due to the uniform pressure within the bubble, to surface tension, and to gravity. 
If the tube radius is sufficiently small for gravity to be negligible, it is to be expec- 
ted that there will be a iilm of liquid of uniform thickness b between the front and 
rear menisci, which is in a region of uniform pressure with no tangential stress 
on the free surface, and therefore at  rest. Goldsmith & Mason (1960) have shown 
experimentally that this is indeed so. The volume swept out by the bubble when 
moving with speed U must equal the average speed of the liquid in front and 
behind it, multiplied by the cross-sectional area of the tube. This average speed 
is thus less than that of the bubble, in the ratio 1 - W = (1 - b/r)Z. Measurements 
or calculation of the film thickness b therefore provide corresponding values 
for W. 

The first problem considered in this paper concerns the balance between sur- 
face-tension and viscous forces for a steadily moving interface between an 
incompressible fluid of viscosity p and another negligible viscosity, both being 
contained in a circular tube of radius r. The viscous fluid is assumed to wet the 
tube wall and the interfacial tension CT is assumed well defined and constant. This 
implies that the viscous stress tangential to the interface vanishes. The magni- 
tudes of inertial, gravitational and viscous forces, relative to surface-tension 
force, are given roughly by the dimensionless numbers 

prU2/g, p9r2/r,  Pub, 
where p is a representative density, and U is the speed of the bubble. We shall 
assume to begin with that 

The first condition is that the Reynolds number based on the tube radius is small, 
and the second that surface-tension forces are much more important than gravi- 
tational forces. These requirements will later be somewhat relaxed. The ratios 
b/r and W must then be determined by consideration of viscous and surface- 
tension forces alone, and so are functions only of pula. Fairbrother & Stubbs 
(1935) confirmed this and suggested after several experiments that 

prU/p  < 1, pgr2/c  < 1. 

W = l.O(pUU/n)* for p U / u  < 0.015. (1) 

These results have been extended by Taylor (1961) to values of p U / a  between 
0-015 and 2. Equation 1 is valid till pU/cr reaches 0.09, while for larger values W 
asymptotes to 0.56. Marchessault & Mason (1960) have proposed the relation 

W = ( p / r ) 4  { - 0.10 + 1.78/U*) 

for p U / r  between 7 x 
which leads to the result 

accurate to within 5 yo if p U / r  < 0.003. In  view of the discrepancies between 
these values, the author repeated Fairbrother & Stubbs’s experiments using a 
different method. The results are reported in $3. 

and 2 x In $ 2 of this paper a theory is presented 

(2) 1.29(3pulCT)3, 
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The second problem considered ($4) concerns a wider tube, vertical and sealed 
at  one end, so that gravity is important. On dimensional grounds the speed of 
rise U at low Reynolds number must be given by 

Pub = f ( p s r 2 / 4  

for some functionf, where p is now the difference in density between the fluid 
outside and that inside the bubble. The basic method used to determine .f is 
similar to  that of the first problem, but the results are quite different. 

It was noticed by Gibson (1913) and independently by Barr (1926) that if 
pgra/v is sufficiently small the bubble does not rise at all. Barr gives a critical 
value of 0.15. Goldsmith & Mason (1960) suggest instead pgr2/cr > 1.27 as a 
criterion for a rising bubble. The analysis of $ 4  yields pgr2/cr > 0.842, and this 
is briefly confirmed by experiment. 

The idea behind the theoretical treatment of these two problems is that for 
sufficiently small pU/cr the viscous stresses appreciably modify the static profile 
of the bubble only very near the wall. In  this region it turns out that the ‘lubrica- 
tion approximation’ gives a good description of the flow and of the profile. In  
the centre of the tube the static profile is still appropriate and there is a region of 
overlap in which the two are matched. In  $$2.1 and 4.1 the approximate equa- 
tions are stated without derivation; $42.2 and 4.2 the self-consistency of this 
process is examined retrospectively, and an estimate obtained for the range of 
values of p U / u  for which it is valid. 

2. Bubble in a capillary tube. Theory 
2.1. First approximation 

(i) In  this section gravity is assumed negligible. A section of the bubble is 
given in figure 1 and this is assumed axisymmetric. A gross violation of this 
symmetry would be visible in practice and does not seem to  occur. Also, in this 
problem, the motion near the wall is essentially determined by a local mechanism, 
and there is no obvious way in which the interaction between the flow at opposite 
ends of a diameter can arise, which is a feature of the asymmetric descent under 
gravity of solid spheres closely fitting in a tube, as considered by Christopherson 
& Dowson (1959). 

For a bubble at rest there are no viscous stresses. The front and rear menisci 
must assume shapes of constant mean curvature K ~ .  The only such axisymmetric 
shape with no singularity on the axis is a portion of a sphere and, if the angle of 
contact at the wall is zero, it must be a hemisphere. 

For sufficiently small non-zero p U / c ,  the interface may be divided into several 
regions. The front and rear menisci are separated by a region CD, where a uniform 
film of fluid is at  rest on the wall of the tube. This region is taken to be long com- 
pared to  the film thickness b. The contribution to mean curvature due to axial 
symmetry is constant and equal to l/(r-b). Also, it is assumed that b/r g 1. 
Away from the wall the viscous stresbes are O(,uU/r), whereas stresses due to 
surface tension are O ( ~ K , ) .  Thus, in regions AB, EF the fractional change in mean 
curvature, ~ K , / K , ,  due to the motion is O(pU1u). However, in regions BC, DE 
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the viscous stresses are O ( p U / b )  and K, changes from approximately 2/r  at B, E 
to approximately l /r  at C, D. It cannot be deduced that b/r = O(pU/a), for only 
gradients of stress, rather than the stresses themselves, can be equated. In  the 
regions BC, DE variations of the viscous stresa are across the film, in a distance 
of O(b),  but changes in surface-tension atress occur along the tube and may be of 
larger scale. It will appear later that the relevant value is O(br)*. In  the centre 
of the tube, however, both variations must be of the same scale O(r) .  

/ / / / / / / / / / I /  

FIGURE 1. Section of a, bubble in a horizontal tube. 

B 

c’”, , / / / /a:, 
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FIGURE 2. The transition region. 

(ii) We now consider in detail the transition regions BC, DE using the nota- 
tion of figure 2. For sufficiently small p U / v  the interface, y = y,, is almost paral- 
lel to the tube wall throughout the region, and the fluid thickness is much less 
than the tube radius, so it is plausible that the ‘lubrication approximation’ 
may describe the flow. Accordingly we make the following approximations. 

The fluid motion in the transition region may be treated as if the region were 
plane, not annular. Further we take dy/dx < 1 throughout the region. The pres- 
sure p ,  within the film is effectively independent of y for given x, and the x- 
derivatives of velocity u,, u,,, etc., may be neglected in comparison with the 
corresponding y-derivatives, uy, uyy. The condition of zero tangential stress at 
the interface reduces to 

uu = 0, when y = y,, (3) 

and the normal stress condition at the interface, 

p ,  + a ~ ,  = - 2p{l+ (dy,/dx)2}* u,, when y = y,, 
can be taken as 

That these approximations are self-conaistent will be shown ‘a posteriori’ in 
Q 2.2. 
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Under these conditions, the Navier-Stokes equations for small Reynolds number 
become 

and the boundary condition at the wall is 

u= 0 when y =  0. (6) 

The volume-flux of fluid in unit time per unit of circumference at  any value of x is 

v = s,"' u( 1 - ;) ay, 

or, to the approximation considered in this subsection, 

from repeated integration of equation (51, using boundary conditions (3 )  and (6). 
However, since the motion is steady continuity requires, again approximating, 

v = U(Yl--C), (8) 
for some constant c. Using the pressure boundary condition we obtain 

But when y1 = b, d3y,/dx3 = 0, so c = b. Equation (9) describes the prose of the 
film throughout the region BGDE. It may be put in universal form by the 
substitutions 

(10) y1 = by, x = b(3pU/a)-)t .  

Then 
d37 7 - 1  

The author is indebted to Sir Geoffrey Taylor, who first drew his attention to this 
equation. 

(iii) The relations (10) show that, for a given solution of equation (11) and for 
sufficiently small (3pU/cr)*, there will exist regions in which 

y = y /b  9 1 and yl/r = bq/r < 1, 

but in which 

so that equation (9) is still valid. Then from equation (11) we see that in these 
regions d37/dt3 N 0 and 

y N +PCZ+Qk+R, 

for some constants P, Q, R. This gives 

However, in this region the mean curvature 
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Equation (12) thus refers to a region of constant mean curvature and thus 
describes a profile determined by surface tension alone. This may be extended 
beyond B, E outside the range of validity of equation (9), by/r  4 1, into the central 
regions AB, EP of the tube. There the previous analysis does not hold, but viscous 
stresses must still have a negligible influence on the profile. This is thus a surface 
of constant mean curvature extending across the tube with tangent nearly 
parallel to the wall at  a distance O(b/r) from it. It is therefore a portion of a sphere 
of radius r to a first approximation, and the mean curvature of the profile de- 
scribed by equation (12) is to this approximation 2/r. Thus 

The constants P, Q, R, will not, in general, be the same at  the two ends B, E. 
But since they refer to one solution of equation ( I l ) ,  continuous in the whole 
region BCDE, there are relations between their values. 

In  region CD, y1 21 b and d37/d<3 21 7 - 1. This has the general solution 

7 = 1 f a d  +@e-JE cos (43g/2) + ye-tt sin (J3&/2). (14) 

All terms on the right-hand side but the first are small compared to unity through- 
out the region CD. If (I/b) (3pU/a)a p 1 where I is the length CD, we have 

near C, 7 - I N ae5, (15) 

(16) near D, 7 - 1 1: Pe-45 cos (43</2) + ye-45 sin (,/3</2). 

These equations indicate that the front and rear menisci may be treated separ- 
ately, and that there is a fundamental difference between them. 

(iv) Equation (15) contains one disposable constant a, but this may be made 
unity by asuitable change of origin of g. There is near C essentially a unique 
solution of equation (1 l), and by stepwise integration in the direction of increas- 
ing 5 one obtains, relative to this origin, unique values of the constants, P, Q, R. 
The position of the origin is, however, physically irrelevant. We might equally 
choose it so that Q vanishes. A different choice yields the same profile shifted 
laterally, and corresponds to a bubble of the same shape in a slightly different 
position in the tube. 

This integration has been performed for the author by Mr B. M. M. Hardisty, 
obtaining P = 0-643, Q = 0, R = 2-79, whence using equation (13) 

b/r = 0.643(3pU/c)Q. (17) 

The whole of the analysis thus far has hinged on the assumption that b/r  is small. 
This is now seen to be self-consistent for small values of (3pU/c)3. Afull discussion 
of all the approximations made will be found in $2.2. 

Substituting in equation (12), near B, we have 

y1 = t(z2/lr) + 1.79(3pU/c)3r. (18) 

Now the right-hand side of equation (9) describes the effect of viscous forces on 
the curvature of the bubble interface in the region where these forces are largest, 
namely near the wall. The departures from sphericity in regions AB, EF, are of 
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the same order as the change in the curvature d2y,/dx20btained by truncating the 
integration of equation (9) at the largest value of y1 for which dyl/dx 6 1 is valid. 
Thus, to the approximation considered in this section, equation (18) describes 
in the region BC an accurate continuation of the spherical region AB. This 
virtual hemisphere (shown as a dashed curve in figure 2) has a tangent parallel 
to the wall at a distance r(1- 1-79(3,uU/cr)%)from the centre of the tube. Thus the 
true mean curvature of the region AB is (2/r){1+ 1-79(3,uU/u)%}. The small 
difference from 2/r does not invalidate the identification (13), but this observa- 
tion does enable us to estimate the pressure drop across a moving front meniscus. 
This arises partly from viscous stresses in the Poiseuille flow in the capillary 
and in the unknown motion near the central spherical portion of the meniscus, 
and partly from the pressure drop across the interface itself, due to surface ten- 
sion forces. For any given geometrical arrangement, the viscous stresses are 
proportional to ,u U/r ,  whereas the surface tension stresses are 

(2cr/r){1+ 1*79(3pU/cr)%}. 

Thus the dynamic pressure drop 3*58(3,uU/cr)% (u/r)  will dominate for sufficiently 
small (p U/cr). 

(v) At the rear meniscus the situation is different. In  equation (16) are two 
disposable constants. Change of origin in 6,  which corresponds to lateral dis- 
placement of the whole rear meniscus without change of shape, can account for 
one of these, but it is still possible, by varying the other, to obtain by stepwise 
integration any value of P 2 0 and corresponding values of Q ,  R. Thus the identi- 
fication (13) may be carried through for any value of b/r. Given b/r, however, 
there corresponds a unique profile and a well-defined virtual hemisphere. The 
profiles all show oscillations in thickness, the minimum value of y/b decreasing 
as P increases. The pressure drop across a moving rear meniscus exceeds the 
static value 2u/r only if (b/r)(3,uU/u)-$ < 0.9. For larger values it tends to 
assist rather than hinder the motion. The necessary energy comes from the 
finite volume of liquid in the film of thickness b at a pressure cr/r higher than 
the liquid behind the meniscus. For values of (bfr) (3pU/cr)-% < 0.9 the energy 
dissipated in the transition region DE exceeds this amount and external work 
has to be done to make the meniscus move. If b/r is defined by a front meniscus 
travelling with the same speed U ,  (b/r)(3,uU/a)f = 0.643, the dynamic pressure 
drop is found to be - 0.930(3,uU/u)% cr/r, and the minimum film thickness to be 
0.716 b. Thus the rear meniscus contributes to the total dynamic pressure drop 
across the bubble, which is 4-52 ( u / r )  (3,uU/cr)Q. 

(vi) It remains to calculate the value of W ,  the fractional velocity correction 
measured by Fairbrother 87, Stubbs. This is easily seen to be the proportion of the 
cross-sectional area of the tube occupied by the film of thickness b, so 

W = 1*29(3pU/~)3 (19) 

to the approximation considered here. 
(vii) A meniscus at rest between two parallel plates in such a way that the 

radius of curvature in the plane of the plates is large compared to the distance 
between them must assume an almost semiciroular profile when viewed in normal 
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section in a plane at right angles to the plates. Changes in curvature due to sym- 
metry about the tube axis do not enter into equation (9), so the theory of this 
subsection can be taken over directly to the almost two-dimensional motion 
about a moving meniscus between two parallel plates. The only amendment is 
that the pressure drop across each meniscus should be halved. 

2.2. Justijcation of the approximations 

In  this subsection we review and extend the approximations made in $2.1. 
These arise in several different ways and will be treated separately. 

(i) Consider first the requirement that inertia forces can be neglected in com- 
parison with viscous forces. The previous analysis shows that, provided inertia 
forces are not so large as to cause appreciable distortion near the centre, this is 
important only near the walls where the interface profile departs appreciably 
from the spherical. In  nearly parallel flow the appropriate Reynolds number 
measuring the relative importance of inertial and viscous forces is pUbZ/,uL, 
where L is the length scale of variations downstream, in this case r(,uU/cr)*. To 
neglect inertia we require not pUr/,u < 1, but 

prU2/cr < 1. 

This is also the condition that inertia forces are negligible in the centre of the 
tube. 

(ii) Secondly, consider the neglect of gravity forces. These can be important 
both in affecting the flow in the film remaining on the wall, and also in distorting 
the shape of a static meniscus which we have assumed spherical. The first will not 
affect the proportion of fluid left behind by the front meniscus; such fluid will 
merely drain to the lowest generator of the tube. The time scale for this is much 
longer than the time taken for the meniscus to move a tube diameter if 
pgb2/,uU -g 1, i.e. if 

(P9T21(4 (Pula)* 4 1. 

The change in static profile affects the identification (13). If pgr2/cr is appre- 
ciable, K~ varies from point to point of region AB. Thus (3pU/cr)+ (P /b )  will also 
vary, and the average value of b over the tube circumference might differ from 
that given by equation (13). The complete solution of this problem for a horizon- 
tal tube is difficult. It is that of finding the surface which touches the wall of a 
horizontal cylinder, and which has a curvature linearly dependent on the height 
above the lowest generator. The relevant non-linear partial differential equation 
has no obvious general solution. However, the author hae assumed (pgr2/cr)2 to 
be negligible and obtained the resultant small perturbations of the surface from a 
hemisphere. To this approximation, the average value of b/r for a horizontal 
tube is identical with that given by equation (13). 

For a vertical tube the problem is easier. The ratio blr is increased by a factor 
1 + gpgr2/a + O(pgr2/cr)2 for a rising bubble and by 1 - (Qpgr2/cr) + O(pgr2/cr)2 for 
a descending one. 

(iii) The last and most significant approximations are those made to obtain 
a solution of the problem in which gravity and inertia are entirely neglected. The 
value of b/r obtained, which is O(pU/cr)%, shows that the contribution of the axial 
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symmetry to the mean curvature of the interface in the transition regions differs 
from l /r  by an amountof order (l/r) (,uU/(r)%. The neglect of this in equation (9) is 
justified, for d2y,/dx2 is of order l/r. For similar reasons terms like 2pu, in the 
pressure-boundary condition and corrections to the equations of continuity are 
all found, when calculated, to be negligible provided (,uUu/c)% is sufficiently small. 
Just how small 'sufficiently' is will be established in the remainder of this sub- 
section, which is devoted to setting up the exact equations and using the results 
of 5 2.1 to obtain a closer approximation. Thence the range of validity of these 
results will become apparent. 

(iv) We use the notation of figure 2, remembering that the flow is axisym- 
metric. Neglecting inertia terms the Navier-Stokes equations become 

1 1 

P 

1 1 
-p, = v, + v,, - - 
P r -y  ( r - y ) 2  

-Px = u,, + uyy - - r - y u ~ ,  

1 
v V. 

The equation of continuity is 
V 

u,+v,-- = 0, 
T-Y 

and the boundary conditions at the wall are 

u = v = 0, when y = 0. 

At the surface y = yl, the normal has direction cosines (-sin 8, cos8) where 
tan 8 = dyl/dx. The components of the stress tensor are 

P X Z Z  -P + 2Pux; P,,: - P + 2w,; P,, Mu, + v,). 
We equate the tangential and normal stresses to 0 and ~ T K ~  respectively, giving 

p{ (u, - v,) ( - 2 sin 8 cos 6 )  + (uv + v,) (cos2 8 - sin2 8)) = 0, 

-p+,uu(2u,sin26+2v,cos28- 2(u,+vx)sin8cos8) = mcl. 

At this stage it is an advantage to develop the notation. The suffix 1 attached 
to any symbol denotes that its value is to be taken on the surface y = yl. The 
prime ' denotes differentiation with respect to x along the surface. We must 
distinguish carefully between, for example, uzl and u;. The former is the value 
of aulax taken a t  y = yl; the latter is the derivative of the value of u at the free 
surface, and is uxl + uul y;. Remembering that tan 8 = y; and using equation (21), 
after some manipulation the surface-boundary conditions may be written 

and - (24) 
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The Navier-Stokes equations become 

(26) 1 U Y  
uyu--pr); = -u  xx +- r -y  +-(Pz-P3, ,!I, ru 

and the continuity conditions 

V -/oulu dy = - 10’ u dy 

and V - U(y, - c) = - Uy:/2r (28) 

complete the exact equations for this problem. We see that in the previous sub- 
section everything on the right-hand side of these equations was neglected. 
Neglecting these small terms, triple integration of equation (26) with respect to 
y using boundary conditions (22), (23) and substitution in equation (27) gave an 
expression for V, equation (7). 

We now repeat this procedure-but retaining the neglected terms. Thus, 

V + @ pi = s”’ dys’ dy 1’ (1 (p, -pi) - u,, + 5) dy 
3ru 0 0 Yl r” 9.-Y 

(29) 

We now manipulate these integrals until they involve solely integrations with 
respect to y of the x-derivatives of u, yl. This may always be done, for, from , 
equation (21) 

-ux(r-YY)dY 

and 

The analysis so far is exact. But these integrals are of an order smaller by 
( p U / ( ~ ) 4  than the terms on the left-hand sideof equation (29). For they all involve 
either x-derivatives to at  least second order or products of first order, or a factor 
yJr, and in the last subsection y; = O(pU/c)*, and yl/r = O(,UU/(T)#. Thus, if 
we use the values of u obtained in the last subsection by integration of equation 
( 6 )  to evaluate these integrals, we will obtain an approximation valid to (pU/cr)f 
higher order. 

Y: 4 5 1 1 v + -Pi = - __ Y?P? -- Y: Yip; - -Y:(YlY; + 5Yi2) Pi + ~ gP;. 
311 15ru 3ru 3P 3rur 

Using now equations (7), (8) to the same approximation 

Up to this stage we have not used the condition (24) on the normal stress on 
the interface. Equation (30) is derived only from the equations of motion end 
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continuity and from the absence of tangential stress. The value of the constant c 
becomes clear when we substitute for the pressure. To the same approximation 
then 

When y1 = b, y; = y; = 0, K~ = l / (r  - b), so we have b - c = - b(b - 2c)/2r, i.e. 

c 21 b -  (b2/2r). 

Finally, it should be noted that the exact form of equation (19) expressing W in 
terms of b is 

(v) Equation (31) is the next approximation to equation (9). It is convenient 
to leave the mean curvature K~ in its exact form, equation (25), but otherwise 

p u p (  x 10-3) 

FIGURE 3. The correction W as a function of pUfu. --- 1-29(3pU/u)); 
solutions of equation (31). 

the only difference is the addition of the terms on the right-hand side. These are 
all 0(3pU/v)s smaller than those on the left, and it is apparent too, that they are 
uniformly smaller, except when yl/b becomes large. When yl/b becomes large, 
but yl/r is still small, the value of K; approaches zero and the profile is approxi- 
mately a surface of constant mean curvature. As yl/r increases further K; in- 
creases again, and equation (31) is clearly invalid. If, however, (3pU/c~)3 is suf- 
ficiently small the minimum value of K; can be made arbitrarily near zero, and 
the matching of the profile at that point to a portion of a sphere extending across 
the central portions of the tube may be made arbitrarily good. Thus, with the 
boundary conditions that y1 + b as x -+ - co, and that, for large yl/b, yl, y;, y;' 



Motion of long bubbles in tubes 177 

should be matched to those values appropriate to a spherical region of some 
curvature centred on y1 = r,  equation (31) apparently comprises the first two 
terms of an asymptotic expansion in powers of (3pU/a)P of the exact equation 
describing the profile. It could in principle be used as the basis for obtaining 
still higher approximations by the same method. The solution of equation (31) 
presumably provides the first two terms of an asymptotic expansion of the profile 
it self. 

(vi) Solutions of equation (31) have been obtained numerically using a digital 
computer. The results are shown in figure 3. For values of pula larger than 
5 x it was clear from the solutions that the minimum value of K;, attained for 
large values of y J b  before the terms in yi2/& on the right-hand side became large 
again, was insufficiently small for an accurate match to a sphere to be made. This 
implies that further terms in the asymptotic expansion must be taken for larger 
values of p U / u .  

(vii) To summarize the results of this subsection: The range of values of,uU/cr 
for which the calculated values of W are likely to  be accurate and yet are appre- 
ciably different from the two-thirds power law of $2.2 is quite small, so the main 
value of the calculations of the subsection is to delimit accurately the upper limit 
to therangeofvalidityofthat law. It i~accuratetowithin5~~,atpU~cr = 3 x 
Neglect of inertia forces is permissible if prUZ/a < 1. The effect of gravity on a 
horizontal tube is O(pgr2/cr)2 but first order in pgr2/cr for other orientations. 

3. Bubble in a capillary tube. Experiments 
3.1. Method and results 

Fairbrother & Stubbs estimated directly the fractional correction W to the 
speed of a bubble by measuring the volume of fluid ejected from the tube when 
the bubble moved a known distance. This method requires an accurate know- 
ledge of the tube radius, and the final correction is obtained from the small 
difference between two volumes measured in different ways. To avoid gravita- 
tional effects the tube diameter must be small, yet if it is too small estimation of 
volumes becomes difficult. Their experiments were confined, for this reason, to 
tubes of 2mm diameter. Their experiments extend down to pU/cr = 1 x 10-4. 
Marchessault & Mason (1960) derived the film thickness from the electrical 
resistance of the tube containing a bubble of known length. Their values for 

mainly for smaller pU/cr, are all somewhat larger than those calculated from 
the Fairbrother & Stubbs formula. In  view of the clear discrepancy between 
this work and the prediction of this paper (equation 2) the author has repeated 
these experiments using a different method. Values of W for two different fluids 
in a 1 mm tube are given in figure 4. The dependence of these curves on the fluid 
used shows that the physical assumptions made in $ 2  are inadequate, but the 
author is unable to postulate any reason which could, even qualitatively, explain 
the divergences between different fluids and from the theory. 

Because of this it is proposed to give a detailed account of the experimental 
technique used here and then to  conclude with a negative discussion of the causes 
of the discrepancy. 

12 Fluid Meoh. 10 
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The apparatus used is shown in figure 5. A column of fluid LM,  a few centi- 
metres long, was drawn at constant rate about 100 cm along a carefully cleaned 
and dried ‘Veridia’ glass tube of 1 mm diameter. This was achieved by coupling 
the flow to  that of a constant head of viscous oil (Shell Diala) across lengths of 
hypodermic tubing (providing a higher resistance than the ‘Veridia’ glass tube). 
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FIQ~RE 4. - Theory; -.- Marchessault & Mason; ---- Fairbrother & Stubbs; 
x aniline, 0 benzene (horizontal tube), 0 benzene (with evaporation precautions), 

benzene (vertical tube). 

FIUWRE 5. The apparatus. 

Three such lengths were available, controlled by taps, PI, P!, F3, giving speed 
ratios for a given head of 50: 1. The head could be supplemented, if necessary, 
using mercury, up to a maximum of 20cmHg. Near the points H ,  K flash 
photographs of the column gave measurements of its length accurate to 

0.001 cm. The average speed U of the rear meniscus of the column was obtained, 
from the time interval between the flashes, to within 2% for the fastest run 
(9.5 sec). The change in length of the column, divided by the length of run, gives 
the proportion W of fluid left behind. 
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The advantages of this method are several. It gives a very sensitive method of 
measuring the very thin film thicknesses involved, down to 2 x cm, at which 
value the probable error is about 6 yo. This is independent of the radius of the 
tube, which, though it should be reasonably constant, need not be accurately 
known. It may also be used for volatile liquids, provided precautions are taken 
to saturate the air in the tube. Cleanliness is, however, vital, as a small sample of 
fluid is involved which touches large areas of tube wall. The apparatus was 
arranged so that the fluid touched no surface but glass, all of which was cleaned 
between every run with chromic acid, washed with distilled water, and dried 
using either acetone and air or by drawing filtered air through a desiccator. This 
is tedious but effective, and the self-consistency of the results would be improbable 
in the presence of significant contaminants. Indeed, this is probably the reason 
for the greater spread of the results for aniline. A check on the diameter of the tube 
and the accuracy of the length measurements was made by measuring the change 
in length of a column of mercury in runs in both directions. It returned exactly 
to its original length, showing that none had been left behind on the wall, but 
showed that the tube was conical with a change in tube radius of around 1 yo. 
A correction for this (never exceeding 30 yo) was applied to the measurements of 
change in length. W proved to be independent of the length of the columns used, 
though this was always greater than 4 tube diameters. The speed U varied during 
the very long runs (up to 36 h) by up to 20 yo, because of changes of the viscosity 
of Diala with room temperature. However, the mean speed was always measured, 
and the values of p/c for the estimated mean temperature obtained from 
tables. 

Finally, the tube was mounted vertically and the same measurements made 
using benzene. According to 92.2 the values of W so obtained should be larger 
by the factor 1 + +pgr2/c than the correspnding values for a horizontal tube, 
provided (pgr2/cj2 can beneglected. For benzene pgr2/cis 0.06,so the values of W 
have been reduced by 4% before plotting in figure 4 to  make them strictly com- 
parable with the data from the horizontal tube. 

3.2. Discussion 

The results plotted in figure 4 show serious systematic divergences between 
theory and experiment. These are largest at the slowest speeds, whereas agree- 
ment is quite good at the upper end of the range of validity of the theory. Aniline 
was one of the liquids used by Fairbrother & Stubbs (1935), but their curve lies 
well outside the spread of points corresponding to aniline in the present measure- 
ments. There is no obvious reason for this, though in principle the method used 
here is probably more accurate for small values of W .  

The parameter prU2/c, which was shown in $2.2 to measure the importance of 
inertia, was never more than 0.1 for either fluid, and, in any case, the main dis- 
crepancies occur at much lower speeds and cannot be due to inertia effects. It 
might be thought that with benzene evaporation could account for the large 
change in volume of the column a t  low speeds. This is not so, as was shown by 
carefully saturating the air in the tube with benzene vapour. Nosignificant 
difference appeared in the results. The excellent agreement between values for 

12-2 
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the horizontal tube and the corrected ones for the vertical tube shows that 
gravity is satisfactorily accounted for. 

The effect was at first thought to be possibly due to roughness of the inside of 
the tube. Hillocks and hollows of the order of I p  in height would cause a film to 
be left behind which was thicker by a constant amount from that predicted by 
theory, and we would expect W to tend to a constant value for sufficiently small 
p U / u ,  corresponding to all the hollows being full. This does not happen for 
aniline, and anyhow this hypotheses would not explain the differences for dif- 
ferent fluids. 

An instability of the meniscus at the lowest speeds would also presumably 
be a function of pUu/u, and in any case there is no trace of it occurring though it 
would be difficult to observe visually. It is also difficult to see how a lack of perfect 
wetting would result in more fluid being left behind at the slower speeds. 

It is possible that dissolved impurities or surface charges were present which 
cause a ‘hardening’ of the free surface similar to the effect observed in the free 
rise of small bubbles in large volumes of fluid. These cannot be present in the 
quantity required to reduce the surface tension by a factor of 4 which varies 
systematically with time. However, they might conceivably result in the free 
surface in the transitional region being able to support a tangential stress, and 
thus make equation (9) invalid. A discussion of various mechanisms which cause 
‘hardening’ has been given by Frumkin & Levich (1947), but it is sufficient here 
to consider two extreme cases. 

If the free surface behaves like a rigid one throughout the transitional region, 
we may easily obtain the analogue of equation (9). If blr < 1 we may neglect 
the change in surface tension with x from its equilibrium value, but we must 
replace equation (3) by 

u = U when y =  yl. 

The equation governing the profile then becomes 

d3y1 - 6pU y1 - 2c ___ 
ax3 u 8 - (33) 

If we make this dimensionIess by 
Y1 = 2c7, 

x = 2 ~ ( 6 p U / ~ ) - * c ,  

we see that 2cla = 230.643(3,uU/u)*. 

When we remember that the quantity actually measured in these experiments 
was c/a we see that this hypothesis of complete absence of slip actually reduces 
the value of W by a factor 2-6. 

However, if we do not require that equation (33) should hold over effectively 
the whole transition region, it is possible to obtain an increased value of W .  If 
equation (9) (no tangential stress) holds for c < y1 < e for some e and equation (33) 
for larger values, the maximum value of P we can obtain is about 0.69 for e = 3c, 
corresponding to an increase of W of only 8 yo. Hardening of the surface is thus 
quite unable to account for the observed results, and they remain a mystery to the 
author. 
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The referee has suggested that the discrepancy may be due to the ‘disjoining 
pressure’ in thin films of liquid in contact with a solid surface (Frenkel, 1946). 
A repulsive pressure f (y , )  due to the cohesive forces between molecules appears 
between the surfaces of all liquid films of small thickness y,, and f is of order 
103dynes/cm2 when y1 is 0 . 1 , ~ .  It falls off very rapidly with film thickness, 
according to an inverse cube or inverse fourth power law. The corrected form of 
equation-(9) is 

The correction is negligible everywhere if y,(df/dy,) < c / r  in the transition region. 
These terms are comparable in magnitude when b = 0*25p, corresponding to  
W = 1 x 10-3, but the disjoining pressure must be quite negligible when W is an 
order of magnitude larger. However, when p U / c  is around 2 x systematic 
divergences between theory and experiment, though smaller, are still apparent, 
particularly in the case of aniline. Thus though discrepancies a t  the slowest 
speeds may possibly be accounted for in this way, this explanation is incomplete. 

4. Bubble in a vertical tube 
4. I. Theory. First approximation 

(i) In this section we consider the motion at low Reynolds number of a long 
bubble in a vertical tube sealed at one end. Gravitation enters into the problem 
only as a buoyancy force, and always occurs in the equations multiplied by the 
density difference p between the fluid outside and that inside the bubble. When 
the problem was first attempted it was thought that pU/cr andpgr2/u should tend 
to zero together, but the method of $2 produced nonsensical results. Observa- 
tion of rising bubbles at once suggested the answer, that there is a critical value of 
pgr2 /c  below which no rise at all takes place, and application of the lubrication 
assumptions to flow under small values of p U / a  and values of pgr2/cr slightly 
greater than the critical gave self-consistent results. This application is given in 
the remainder of this subsection, together with reasons why no similar theory 
exists when p is slightly subcritical. In  Q 4.2 the range of validity of the theory is 
considered, and finally in $ 4.3 some experimental confirmation is mentioned. 

(ii) The method of analysis is very similar to that of the previous section. The 
restriction to cases when the steady speed of rise U is such that p U l u  < 1 again 
implies that the effect of viscous forces on the profile of the bubble will be con- 
fined to a region near the wall. Further, in the absence of contrary evidence, 
axial symmetry will be assumed. 

The front and rear menisci are separated by the region CD (figure 6), where a 
uniform film of fluid is draining under the effects of gravity alone. In  regions AB, 
EF the viscous stresses exert a negligible influence on the film profile, which 
is determined by static equilibrium between surface tension and gravitational 
stresses. I n  the transition regions viscous stresses are important, but the film 
profiles are everywhere nearly parallel to the tube wall, and the ‘lubrication 
hypothesis ’ proves to be a self-consistent approximation. 

(iii) In  the regions AB, EF the profile is determined by the condition 

C K l  = P P ,  (34) 
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where K, is the mean curvature of the surface and x the height above some fixed 
level. This is the equation which was treated by Bashforth & Adams (1883) 
in their computations on the profiles on pendent and sessile drops, and into whose 
results more detail has been interpolated by Fordham (1948). However, for the 
purpose of this paper the author required a criterion which could not be obtained 

FIGURE 6. Section of 8 

bubble in a vertical 
tube. 

FIGURE 7. Equilibrium profiles under surface tension and 
gravity forces. (a) Top meniscus pg&i/u > 0.842; ( b )  top 
meniscus pgr:/u < 0.842; (c) bottom meniscus. 

accurately from these tables, so the digital computer EDSAC I1 was programmed 
to give it. The calculated profiles for region AB may be divided into two classes 
shown diagrammatically in figure 7 (a) and (b).  A member of each of these has a 
point of inflexion I ,  at which the radius is r I ,  but ifpgr;/g > 0.842, as in figure 7 (a) ,  
there is no point at which the tangent plane is vertical. In  figure 7 (b)  the tangent 
plane is vertical at a point T. Furthermore, for I(pgr;/v)-0-8421 < 0.2, the 
angle q5 made with the vertical by the tangent plane at I is given by 

q5 = 0*49((pgr;/a) - 0.843). (35) 

The profile within this range will prove of most interest to us in the following 
discussion. The profiles for region EF exhibit no point of inflexion, as shown in 
figure 7 ( c ) .  

(iv) We now consider the transitional and uniform regions BCDE, using the 
notation of figure 8. If the rate of rise is sufficiently small, the lubrication approxi- 
mations will describe the flow, and the analysis proceeds exactly as in Q 2, except 
that the pressure everywhere must be modified to account for the gravitational 
body force, by addition of a term pgx. Also, the flux V, in the uniform region is not 
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zero, but pgb3/3p per unit circumference. It is to be expected that, for sufficiently 
small pU/cr the ratio of film thickness to tube radius will also be small. This 
proves to be self-consistent. Equation (9) of Q 2.1 is modified to read 

B 

F r a m  

In  this problem, however, there is an additional continuity requirement, that all 
the fluid displaced by the top meniscus of the rising bubble should flow through 
the uniform region CD to the lower meniscus. Thus 

1 - V,  = - __ { Ur(r  - b)2}, P9b3 -- - 
3P 27~r 

i.e. (37) 

t o  this order of approximation. Thus, for sufficiently small b/r the last term on 
the right-hand side of equation (36) greatly exceeds the other two throughout 
region BCDE, and the film profile is given by 
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This may be made dimensionless by the substitution 

to  give 

(v) This equation should be compared with equation (11) of 92.1. In  the 
region CD, y1 21 b, 7”’ 21 3(7- 1). As before this enables us to  say that, given b, 
for a top meniscus there is an essentially unique profile, whereas for a bottom 
meniscus an infinite family. Also, the relations (39) show that for sufficiently 
small pgb2/u, provided b/r is also small, there exist regions in which 

7 = Yl/b < 1, yi/r = br/r < 1, 
and yet 

Here equation (38) is still valid, but 7”’ N 1 and 

& = (pgb2/4) 7 < 1. 

for some constants P, &, R, which are determined to within a change of origin at 
a top meniscus. However, in this region dK,/dx -N y; N pg/u, so equation (41) 
refers to a region of equilibrium between surface tension and gravity. This is the 
defining condition of regions AB, EF so the profile there must be identical with 
that part of one of the profiles shown in figure 7 where the tangent plane is nearly 
vertical. 

But, for a top meniscus, it can fairly easily be shown, and numerical integra- 
tion confirms, that equation (31) admits of no point where 7’ = 0 and the tangent 
plane is accurately vertical. Thus, no matching at all is possible to a profile of 
type 7 (b).  For a profile of type 7 (a) matching is possible within the assumptions 
of this section, provided q5 is small-in other words, providedpgr;/u is only slightly 
greater than 0.842. With origin chosen so that P = 0, numerical integration for 
a top meniscus gives 

At the point of inflexion 1 

P = 0, Q = 0.572, R = 1.10. 

y1 = l a l o b ,  y; = 0.572(pgb2/u)f, r, = r - yl. 

Insertion in equations (35), (37) gives 

Near the rear meniscus the film thickness again has a wave-like appearance and 
a profile can be found matching a meniscus moving with speed U to any small 
film thickness b. 

(iv) The impossibility of matching solutions of equation (38) to  a profile of type 
7 (a) does not demonstrate that a bubble will not rise in a tube withpgr2/u < 0.842, 
for it could do so unsteadily, or under conditions in which the lubrication 
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approximations do not hold. However, it  does indicate a critical radius at which 
the type of flow changes drastically, and quite simple experiments are sufficient 
to indicate the nature of the change. These are mentioned in $4.3. 

4.2. Review of approximations 
(i) The importance of inertia forces in the transition region is measured by the 

ratio pub2/pL,  where u is a typical velocity, and L the length scale of variation 
along the streamlines. This latter is b(pgb2/a)-*, so from continuity the relevant 
Reynolds number is (purlp) (pgb2/g)f .  For water this becomes of order unity 
when pu/c is around 8 x and (pgr2/g)  - 0-842 N 0.25, and the neglect of 
inertia forces is a severe limitation. However, also of importance are the geo- 
metrical and related approximations made in deriving equation (42). 

(ii) To obtain an estimate of the validity of these results we note that the 
analysis of 0 2.2 leading to equation (31) applies directly to this problem, provided 
we add a ‘virtual pressure ’ pgx to the true pressure everywhere to account for the 
gravitational body force. For provided the Reynolds number is small the boun- 
dary conditions and equations of motion are otherwise unaltered. Equation (31) 
now becomes 

When y1 = b, 9; = y; = 0, K~ = 1/(r - b),  so 

b2 - 2bc +b-c  = --. Pgb3 
3P u 2r 

It is also clear from the definition of the constant c of equation (28) that if the 
bubble surface were to fill completely the cross-section of the tube (yl = 0) there 
would have to be an upward flux -2mUc  flowing somehow past the bubble. 
But  in this case the tube is sealed at one end, so c = &r exactly. Thus the next 
approximation to equation (37) is 

r pgb3 b 
2 - 3 p u + 2 .  

(iii) Comparison of these equations with equations (37), (38) show that the 
approximations made in deriving equation (42) have arisen in three ways. The 
flow in the transition region is not quite undirectional and the terms describing 
departures from the parabolic velocity profile are the first two on the right-hand 
side of equation (42), and are smaller than those retained in equation (38) by 
O(b/r)*. Terms arising from the film thickness in the transition region being a 
finite proportion of the radius of the tube are O(b/r) t .  Finally, the neglect of 
changes in the mean curvature due to axial symmetry is O(b/r)* but numerical 
integration of the relevant equation shows that all these errors are slightly smaller 
than those contained in equation (35), which approach 10 yo when 

(pgr2/la) -0.842 = 0.25 and p U / v  = 8 x 
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This estimate is for the error in the constants P, Q, R and hence in the profile 
attained by the meniscus well away from the wall. This profile is identified by 
the radius at which it would have a point of inflexion if it  were continued outwards 
according to figure 7(u) .  Although the second term in equation (42) is O(b / r ) )  
smaller than the first it  may still consistently be retained for it arises only in 
relating rf to r, once rI has been correctly identified. Its omission would severely 
restrict the range of validity of the result. 

4.3. Experimental results 

Complete verification of equation (42) and of the prediction that the bubble 
will not rise is difficult. One requires, for any given fluid, a tube of constant 
diameter accurately known and very near the critical value. By chance, however, 
for water at 20" C and a tube of diameter 0.50 cm (nominal) pgr2/a = 0.842. The 
predicted rate of rise a t  40 "C is 2.1 x cmlsec. The author immersed such a 
vertical tube in a water bath with temperature variable between 15 and 40 "C. The 
results were not completely reproducible. At 15 "C, pgr2 /a  = 0.834, the bubble 
was usually stationary; at 40 "C it  was always rising with speeds of the order of 
a, few cm per hour. These speeds depended on the position in the tube and on 
whether it was accurately vertical. In  view of the probable presence of impurities 
and of variations in the diameter of the tube, these results indicate quantitative 
agreement with the main conclusion that the bubble will not rise if pgr2/a < 0.842 
and qualitative agreement with equation (42). 

5. Conclusion 
The theories of this paper form a small contribution to the problem of pre- 

dicting the profile of a bubble in a capillary tube and the rate of rise of a bubble in 
a vertical tube. They are limited by the basic physical assumptions made 
about the properties of the free surface of liquid films under these conditions, 
that there should be a well-defined surface tension and hence no tangential stress 
on the surface. Perfect wetting on the tube wall is also essential. But provided 
inertia forces are negligible, and provided the film left on the wall during the 
passage of the bubble is sufficiently thin, the effects of viscous forces on the profile 
of the interface can be described by the lubrication equations, and are confined 
to a region near the wall. The remainder of the profile is governed by the same 
relations as if the bubble is stationary, but there is an intermediate region in which 
the two solutions can be matched. The thickness of fluid left on the wall is in 
each case determined uniquely by conditions at  the front meniscus, whereas at  
the rear meniscus there is a steady solution matching smoothly onto any film 
thickness that should previously have been left there. A t  the rear meniscus also, 
the profile shows oscillations in thickness in advance of the main curvature. In a 
capillary tube the bubble moves slightly faster than the mean speed of the fluid 
in the tube, the fractional correction being 1*29(3pUU/a)0. A t  the slowest speeds 
the main pressure drop in such a tube arises from the slight difference in curvature 
between the front and rear menisci of the bubble, and is 4*52(a/r)(3pU/a)f. 
These results are only valid if p U / g  < 5 x 
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The free rise of a long bubble in a vertical sealed tube is completely inhibited 
if pgr2/cr < 0.842. This is associated with the existence of a profile in static equili- 
brium making zero angle of contact with the wall only for smaller radii. For radii 
up to 12 yo larger than the critical the rate of rise increases very rapidly, being 
given by (pgr2/la) - 0.842 = 1.25(,uU/a)% + 2*24(pU/cr)*. 

From a practical point of view the cases of most interest are when ,uU/cr is larger 
than the very small values discussed here. When surface tension is not dominant, 
however, none of these methods are appropriate, and a satisfactory method of 
analysis has yet to be found. 

The waves near the rear meniscus predicted in $2.2 are easily observable at  
larger film thicknesses than those for which theory is valid, and seem to be of 
quite general occurrence. From the point of view of causality, it  is of interest that 
the values of b/r obtained are in each case determined by consideration of the 
front meniscus alone. The predictions of the pressure drop across the bubble in a 
capillary are also of no great practical use, for at the very small values of pUlu  
for which they apply, effects due to the variations in the radius of the tube are 
likely to be larger. The two-dimensional version of this theory is applicable to 
the motion of fingers in Hele-Shaw cells considered by Saffman & Taylor (1958), 
but the restriction to small values of p U/cr precludes at  present an explanation of 
their results. Experimental verification of this theory is unsatisfactory. For 
values of ,uU/cr larger than 3 x 10-3 the results of this present work, those of 
Fairbrother & Stubbs (1935), Taylor (1961), and Goldsmith & Mason (1960) 
are in broad agreement that Fairbrother & Stubbs’s formula l*O(,uU/a)~ is a 
good estimate for the value of W up to pU/cr = 0.08, above which it over estimates 
the true value. Below 3 x 10-3, which is also the upper limit of the present theory, 
there is widespread disagreement, and at the very slowest speeds the divergences 
between experiment and the two-thirds power law involve a factor of 8. Although 
in principle the method used by the present author is probably the most accurate 
in this range, he is unable even to suggest an explanation of this situation. There 
have also been widely differing estimates of the critical radius below which a long 
bubble in a vertical tube will not rise. This is surprising, for the phenomenon is 
striking, and above the critical point the speed of rise increases very rapidly 
with radius. Provided that adequate precautions are taken about cleanliness, 
that the cross-section of the tube be circular, and that it be accurately vertical, 
it  should be p6ssible in further experiments to narrow this range considerably. 

The author is indebted to Sir Geoffrey Taylor and Dr P. G. Saffman for in- 
valuable help and discussions, to Mr R. G. Wooding and Mr W. E. Thompson for 
assistance with experiments, to Dr S. G. Mason for commenting on this manu- 
script, and to the Department of Scientific and Industrial Research for a grant. 
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